Recognition of Human Activities Using Layered Hidden Markov Models
نویسندگان
چکیده
Human activity recognition has been a major goal of research in the field of human computer interaction. This paper proposes a method which employs a hierarchical structure of Hidden Markov Models (Layered HMMs) in an attempt to exploit inherent characteristics of human action for more efficient recognition. The case study concerns actions of the arms of a seated subject and depends on the assumption of a static office environment. The first layer of HMMs detects short, primitive motions with direct targets, while every upper layer processes the previous layer inference to recognize abstract actions of longer time granularities. The problem of unsupervised learning within the LHMM framework is also addressed, through automatic segmentation of raw data and hierarchical clustering of motion samples. Finally, the idea of context aware HMM modeling is also introduced and future directions for its application are proposed. The results demonstrate the efficiency, the tolerance on noise interpolation and the high degree of person invariance of the method.
منابع مشابه
A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence
This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...
متن کاملSpeaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
Speaker Independent Speech Recognition Using Hidden Markov Models for Persian Isolated Words
متن کامل
MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL
Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کامل